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Abstract
The effect of an external harmonic signal on the screw instability of the current
in the electron-hole plasma has been studied experimentally in Ge at 77 K
and 300 K. The influence exerted by external signals with various amplitudes
and frequencies, applied to a sample both additively and multiplicatively, on
the synchronization, amplification and stability of the system in absolute and
convective modes of instability excitation has been investigated at points of
bifurcation in a wide region of the parametric space.

1. Introduction

When subjected to external influence (electric and magnetic fields, illumination, temperature
gradients, injection), semiconductors exhibit strong nonlinear behaviour leading to various
kinds of instability, generation of oscillations and waves, occurrence of chaotic states, and
spontaneous formation of spatial and temporal structures. Here, the results are reported
of an experimental study of nonlinear dynamic processes associated with the evolution of
the Kadomtsev–Nedospasov instability (screw instability or oscillistor effect) [1–4] in an
injected electron–hole plasma in Ge in longitudinal electric and magnetic fields at high
control parameters and temperatures of 77 and 300 K. The oscillistor was selected to
study the synchronization and amplification processes because of the good reproducibility
of experimental results and comparative simplicity of the experiment in this case. Samples of
n-type germanium with equilibrium concentration ND − NA ≈ (1012−1014) cm−3 were cut
out as cylindrical or rectangular bars of length 10 mm and cross-section 1 mm2 and etched in
a polishing etchant. Contacts of In with 0.5% Ga and Sn with 7% Sb were deposited onto two
opposite edges of the samples to provide an injection of, respectively, electrons and holes. Up
to five pairs of ‘Hall’ probes allowing a study of the spatio-temporal coherence in the system
were applied along the sample, with their ohmic behaviour in external electric fields verified.
All the experiments were carried out in the steady-state mode, using rectangular pulses of
varied duration and amplitude (figure 1).
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Figure 1. Schematic diagram of the experimental arrangement for a sample with three pairs of
‘Hall’ probes. A generator of sinusoidal signals (GSS) is connected to the sample by means of a
pulse transformer.

2. Experimental results and discussion

The response of a nonlinear dynamic system in the state of self-oscillation mode or in the pre-
threshold state to an external periodic perturbation depends on the frequency and amplitude
of this perturbation [5] and also on the method by which it is introduced into the system.
Depending on the frequency detuning� = ωex−ω0, whereω0 is the fundamental frequency of a
self-sustained oscillation system and ωex is the external frequency, various kinds of bifurcations
and effects of weak signal amplification and frequency synchronization (or capture) have
been found theoretically [5–7] and experimentally [8–10] in nonlinear dynamic systems at the
fundamental frequency, harmonics and subharmonics of the external perturbation. An external
perturbation Eex sin(ωext) can be introduced into the system (i) additively, through opposite-
end contacts of the sample, being superimposed on the dc electric field E0 as an external force
(force perturbation), with the total electric field given by

E = E0 + Eex sin (ωext)

or (ii) multiplicatively, by means of a transformer through 1–1 potential probes (parametric
perturbation), with the response of the system detected either at the 2–2 or 3–3 potential probes
or across the resistance Ri.

2.1. Absolute instability mode

In the case of an absolute current instability (self-oscillation mode), the amplitude of
oscillations arising at some point in space increases at this same point in the t → ∞ limit until
nonlinear effects restrict its build-up. In this case, voltages across the potential probes and the
current through a sample show spontaneous oscillations.

If the control parameters E and H are chosen in such a way that the system is passing
from unstable focus to limit cycle, then, on applying a small external harmonic signal to the
sample, this signal is amplified. At large amplitudes of self-oscillations, when limit cycles
occur in the system (figure 2), this signal is suppressed. Such a small perturbation results in
different modulation patterns when the system passes from the limit cycle to, e.g., period-2 or
period-4 bifurcations.

At U0 = 12 V and H = 4.5 kOe, the sample is in the self-oscillation mode with a
fundamental oscillation frequency ω0 = 125 724 Hz (limit cycle). If an external periodic
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Figure 2. The effect of small external periodic perturbation on the system passing to the limit
cycle: (a) ωex = 80 490 Hz and (b) ωex = 122 451 Hz.

perturbation with an amplitude Uex = 0.077 V and frequencies ωex = ω0, ω0/2, 3ω0/2 and 2ω0

is additively applied to the sample, then frequency lock and 5–10-fold signal amplification are
observed, with the strongest amplification occurring at frequencies ω0 and ω0/2. By choosing
U0 = 15.5 V and H = 4.5 kOe, we bring the system into a threshold mode before the
period-doubling bifurcation. With increasing U0, a period-doubling bifurcation occurs, with
the fundamental frequency ω0 growing to 167 846 Hz and the fundamental harmonic exceeding
the subharmonic ω0/2 = 83 923 Hz in amplitude by a factor of 1.5. If an external signal with
frequencies ω0 and ω0/2 is introduced under these conditions, the harmonic with ω0/2 is
amplified and the fundamental harmonic ω0 decreases in intensity, in good agreement with
the theory [6, 7]. Introduction of intermediate frequencies in the above-mentioned frequency
detuning range gives rise to complex modulation patterns, manifesting themselves in power
spectra as linear combinations of frequencies nω0 +ωex. In this case, two-dimensional tori with
closed trajectories or with two incommensurate frequencies are observed in phase portraits,
depending on the ratio of frequencies ω0 and ωex. At U0 = 16.3 V and H = 4.5 kOe, a period-4
bifurcation occurs and the fundamental harmonic frequency increases to ω0 = 180 053 Hz, but
peak power is observed at a frequency ω0/2 = 90 086 Hz. Introduction of an external signal
with frequencies ω0, ω0/2 or ω0/4 results in a much smaller amplification and substantial
distortion of trajectories in the phase space. A sample with screw instability developed upon
introduction of an external periodic perturbation can be regarded as a Van der Pol–Duffing
oscillator with external harmonic perturbation. All the characteristic features inherent in
such an oscillator are manifested in the system under study. Theoretical investigations [11]
predict for the transition from quasi-periodicity to chaotic state a universal behaviour with
fractal dimension D. We calculated the dimension of the system by constructing the so-called
Arnold tongues in the frequency synchronization range. Frequency synchronization occurs at
frequency ratio

ωex

ω0
= p

q

where p and q are rational numbers, ω0 is the fundamental frequency of self-oscillations, and
ωex is external frequency.

It is known that the synchronization range is wider, the higher the amplitude of the external
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periodic signal. Let us denote by S the length of the interval between two ranges where the
frequency locking occurs with ratios Pn/Pn+1 and Pn+1/Pn+2, (Pn, Pn+1 and Pn+2 are numbers
of the first Fibonacci sequence), and by S1, S2 the lengths of the intervals between the locked
state (Pn + Pn+1) / (Pn+1 + Pn+2) and states Pn/Pn+1 and Pn+1/Pn+2, respectively. In the limit
n → ∞ the fractal dimension of the system can be estimated using the formula [11](

S1

S

)D

+

(
S2

S

)D

≈ 1.

We obtained the frequency synchronization ranges corresponding to 3:5, 5:8 and 8:13
frequency locking ratios in the intervals 82.397–83.469 kHz, 89.517–90.112 kHz and 86.906–
87.327 kHz, respectively. The fractal dimension at the onset of the chaotic state, estimated
from our experiment, was D = 0.903, which is comparable with the theoretically calculated
value of 0.868. The above-mentioned universal behaviour predicted by renormalization-group
methods is observed when the winding number ρ determined experimentally as the ratio of ωex

and ω0 is maintained constant and equal to the golden mean σg = (
√

5−1)/2 = 0.618034 . . ..
Therefore, when raising the additional external field Eex in experiment, we adjusted the external
frequency ωex so as to ensure ωex/ω0 = σg. Some complicating factors, such as fluctuations
of the fundamental frequency ω0 of the oscillator and instability of the frequency ωex of the
generator of sinusoidal signals, may occur in experiment. Quasiperiodic transition to chaos is
characterized by the universal exponent δ from the relation [11]:

�n(k) = �∞(k) − const δ−n

where �n is a parameter of the system, defining the winding number. The δ value is found
from experiment as

δ = lim
n→∞

�n − �n+1

�n+1 − �n+2

where �n, �n+1, and �n+2 represent the widths of the locked states Pn/Pn+1, Pn+1/Pn+2 and
(Pn + Pn+1)/(Pn+1 + Pn+2) mentioned above. We measured the widths of 3:5, 5:8 and 8:13
locked states and obtained experimentally δ = 2.72 . . .. Our value is in agreement, as an
intermediate, with the theoretical values 2.618 . . . and 2.833 . . . for |k| < 1 and |k| = 1,
respectively [11].

Using the time series obtained from different pairs of ‘Hall’ probes, we calculated
the fractal and Kaplan–Yorke [12, 13] dimensions for different parts of the sample. The
experimental results are shown in figure 3. The dependences of these dimensions on the control
parameter U (electric voltage) for different parts of the sample are qualitatively similar, but
differ in magnitude. We attribute the quantitative difference to the strongly non-equilibrium
distribution of the electric field along the sample. The field strength is markedly lower near
the contacts (probes 1–1 and 3–3), compared with that in the middle of the sample (probes
2–2), which is characteristic of double-injection structures. The phase portraits obtained for
these pairs of probes exhibit analogous behaviour. At U0 = 9.6 V and H = 4.5 kOe we
observed double cycles for the probes 1–1 and 3–3 and an attractor with a more complicated
shape for the probes 2–2, i.e. several attractors occurred in the sample simultaneously. Such
a loss of spatial coherence apparently indicates that the homogeneous semiconductor system
disintegrates into subsystems with different numbers of degrees of freedom [14].

Contrary to the results of [15], chaotization of self-oscillations under an external periodic
signal is observed solely in the case of a force-type action of the external perturbation.
Parametric introduction of the external signal does not lead to chaotization in the system.

When the power of the introduced external periodic perturbation dissipated in the
sample causes Joule heating, an additional parameter appears in the system, complicating
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Figure 3. Dependences of fractal (df ) and Kaplan–Yorke (dK−Y) dimensions on voltage for
different parts of the sample.

the interpretation of experimental data and impairing their reproducibility. The rise in the
intensity of the fundamental harmonic with increasing control parameter E is in agreement
with the well-known relation [4] for a screw instability

ω = k

2π
µaE

where k is the wave-vector, µa is the ambipolar mobility and E is the electric field. It should
be noted that, when approaching the frequency lock, the system in some cases demonstrates
reverse bifurcations: frequency quadrupling, frequency doubling and limit cycle.

Raising the amplitude of the external signal results in basic changes. We carried out the
following experiment: an external periodic perturbation was set, having fixed frequency and
increasing amplitude, and its influence on the behaviour of the system in increasing electric
field E was studied. It was found that, with the amplitude of the external signal increasing
at small E, the amplitude of fundamental self-oscillations at frequency ω0 goes to zero, i.e.,
frequency synchronization (lock) occurs, and the external signal is amplified. This mechanism
of frequency lock, manifesting itself at sufficiently high amplitudes of the external perturbation,
is usually referred to as ‘synchronization by quenching’ [5]. It should be noted that at small
external signals, before the synchronization threshold, various types of beating arise in the
sample. To these beats correspond various two-dimensional tori in the phase space, rebuilt
depending on the frequency detuning. A resonance on a two-dimensional tori at frequency
lock is typical of small periodic perturbation amplitudes, when a limit cycle with closed
trajectory appears. The tori decay when the system passes to the synchronization mode and
the limit cycle arises in the phase space, which is feature characteristic of large amplitudes of
external perturbation, i.e. the case of synchronization by quenching. Different mechanisms
of synchronization prevail, depending on the ratio of the external parameters: i.e. the electric
field applied to the sample and the periodic perturbation.
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2.2. Convective instability mode

For the screw instability, the convective mode is known to exist at before-threshold values of
the parameters E and H , when the true criteria of absolute instability are not yet met [4]. The
theory [5, 6] states that, if an external periodic signal is applied to a dynamic system on the
threshold of a bifurcation (period doubling or Andronov–Hopf bifurcation), the signal with a
frequency appearing upon the bifurcation is amplified. The condition for convective instability
at T = 77 K is met at magnetic field strengths H = 3.1 and 6.1 kOe and applied pulsed
electric voltages V = 3.5 and 2.2 V respectively. Let us consider the influence of the external
periodic signal with fixed amplitude and widely varied frequency on the behaviour of the screw
instability under a parametric perturbation. The sample is brought to the mode of absolute
instability generation by selecting the electric field at a fixed magnetic field determining the
threshold frequency. Then, the voltage is reduced until the oscillations disappear and a small
periodic perturbation is applied to the pair of probes closest to the p+ contact. The time series
of the system are studied at a pair of probes lying closer to the n+ contact. The output signal of
the ac generator is maintained constant. Similarly to the case of absolute instability, when an
external signal is applied to the system parametrically, a signal with the fundamental frequency
ω0 is generated in the sample, as indicated by the power spectrum, and there appears an external
signal with even harmonics up to 8ω0 and some other harmonics representing superpositions
of these frequencies. In most cases, phase portraits demonstrate two-dimensional tori with
trajectories closed or open, depending on the ratio of the fundamental harmonic frequencies,
or with cycles having periods of up to (6−8) ω0. The amplification of the external signal has
resonance nature (figure 4). The amount of amplification (up to 30 dB) depends not only on the
external signal frequency, but also on the parametric space region (E, H ) in which the system
is studied. Of more interest are the data on amplification in the case when an external signal
of certain frequency excites in the sample a natural threshold frequency and the ratio of these
two frequencies is an integer (2, 3 and 4). The signal with the fundamental frequency ω0 not
only appears, but is also considerably amplified at applying an external signal ωex = ω0/2, its
magnitude exceeding 12–15-fold that of the external signal. Resonance amplification of the
same order of magnitude is observed at ωex = ω0/4 as well. In all of these cases, frequency lock
occurs when the resonance is approached and a cycle with the corresponding period appears in
the phase portrait instead of two-dimensional tori. Before the onset of synchronization, weak
harmonics, multiples of both frequencies with a large denominator (up to 60), appear in the
spectra, eventually ‘tuning’ the system through their participation in resonance phenomena.

With increasing frequency of the external signal (ωex > 2ω0), the system response
becomes simpler and usually follows the scheme of transitions: cycles with periods 1 → 3 → 2
and an ordinary limit cycle due to the frequency introduced into the system.

2.3. Synchronization of chaotic oscillations

It should be noted that the synchronization of chaotic self-oscillations has threshold nature (i.e.
there is a threshold amplitude of the external perturbation) and also depends on the multiplicity
of the frequency introduced into the system. This can be accounted for by the fact that there
exists a mechanism of local instability of motion in a system with a strange attractor. In addition,
cases are observed in which the system transits to modes that are simpler in topological regard,
when the Lyapunov dimension decreases owing to effects of self-organization in the system.
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Figure 4. Power of the harmonic amplified to the greatest extent versus the frequency of an external
periodic perturbation in different magnetic fields H : 3.1 kOe (curve 1) and 6.1 kOe (curve 2).

3. Conclusion

Study of the absolute and convective modes of screw instability excitation yielded
the amplitudes and frequencies of the external periodic perturbation, for which motion
regularization, signal amplification and frequency lock occur. The chaotic attractor observed
in the system under external periodic action signal results in either a limit or a doubling cycle
or in a torus with rational number of revolutions. The theory of nonlinear systems regards
the synchronization under external periodic signal as a transition from a less ordered state to
a more ordered one. From this point of view, the synchronization is a nonequilibrium phase
transition. To classify nonequilibrium phase transitions, the beat frequency was chosen as
the order parameter in our experiment. We believe that the synchronization by quenching is
a first-order nonequilibrium phase transition, since the beat frequency shows a discontinuity
in going across the boundary of the synchronization range and a hysteresis occurs, i.e. the
system comes into, and out of the synchronization region at different magnitudes of frequency
detuning. At the same time, frequency lock-in, characterized by a continuous change in the
order parameter and absence of hysteresis, is a second-order phase transition.
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